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I. DEFINITIONS AND PROOFS

A. Proof of Lemma. 1

Definition. 1 (Rayleigh quotient) Given a symmetric matrix
A, the Rayleigh quotient is defined by:

R(A,x) =
xTAx

xTx
. (1)

Lemma. 3 (Bounds of Rayleigh quotient) For a 3 × 3
symmetric matrix A and vector x, the bounds of Rayleigh
quotient are given by:

λ3 (A) 6 R(A,x) 6 λ1 (A) . (2)

The equality holds when x is exactly the corresponding
eigenvector.

The objective function for minimization is a Rayleigh
quotient about Σ and n, shown as:
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With Lemma. 3, we have E = λ3(Σ) when n = RΣe3. We
also refer the readers to [1].

B. Derivation of Eq. 17

Suppose we have a set of frames {Fk}k=1...N . For the
same feature, the local observation under Fk is represented
by a set of points Pk = {pk1, · · · ,pknk

}. The sample mean
and covariance for each point set under Fk are denoted by
µ`

k and Σ`
k. Given the corresponding pose of Fk, the sample

mean and covariance under W can be derived by linear
transformation: {

µk = Rkµ
`
k + tk
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kRT

k

, (4)

We show that the distribution for aggregated point cloud can
be derived in closed form, given by:
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where the second term Σµk
is given by:

Σµk
= (µk − µ)(µk − µ)T . (6)

The derivation is shown as follows:
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Fig. 1: An illustration of states in the manuscript.
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Fig. 2: Comparison of the performance with different error-
terms taking into account.

C. State Definitions

An example of state definition is shown in Fig. 1. In the
manuscript, we denote the point set under Fk as Pk. We
assume that points in Pk belong to an identical feature and
shares the same parameters. The sample mean and covariance
of Pk are denoted by µ`

k and Σ`
k, respectively. Pk is subject

to a RBT Rk, tk, which transform the points from local
frame Fk to the global frame W . The sample mean and
covariance of

⋃
k Pk under W are denoted by µ and Σ.

II. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Parameter Study

In this section, we perform further studies on the impact of
voxel size of our implementation. With changing the voxel
size, we evaluate the translational and rotational error of
our method along with variants of NDT [2] and VGICP
[3] in Fig. 3. For different methods, the parameters in the
experiments are selected according to this result.

Based on the evaluation, generally, all the methods achieve
relatively accurate estimation with voxel size around 0.3−0.4
m. Moreover, we observe that different from the other
methods, the error of our methods drops quickly with the in-
crease of voxel size. This could be counter-intuitive because
larger voxel size produces sparser data, and sparser data
could degrade the registration performance. We conjecture
the reason could be that too small voxel size could not
guarantee sufficient correspondences to maintain the global
consistency. This could be different from the frame-to-frame
methods, such as VGICP(nr1). We think it is reasonable that
the performance degrades when the voxel size is smaller than
0.2 m. This is because smaller voxel size could not increase
the density since the point cloud is already very sparse.
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Fig. 3: Evaluation on the accuracy of aligned poses for
different methods, when the size of voxel varies from 0.05
to 0.6 m.

B. Ablation Study on the Objective Function

We validate the contributions of different terms in the ob-
jective function. We evaluate the registration performance of
the original objective function and objective function without
taking the translational constraints. The two baselines are
denoted as w/ trans and w/o trans, respectively. As shown
in Fig. 2, the results without translational constraints are
consistently worse than those with all the terms used in the
optimization. This indicates the terms decoupled from the
original objective functions do contribute to the registration
accuracy.

C. Qualitative Results

To better visualize the reconstructed point cloud from
different methods, we provide more qualitative results of
more baselines in Fig. 4 and Fig. 5. The results include
on sequence Haupt. and Gazebo.S. from ETHZ Registration
Dataset [4]. While some traditional methods have certain
mis-alignment, methods based on BA generally provide a
high-quality reconstruction result.
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Fig. 4: Heat maps showing the reconstruction error of 4 methods from a fixed view on sequence Haupt. The range of error
is set to 0-5 cm as showing in the bottom colorbar.
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Fig. 5: Heat maps showing the reconstruction error of 4 methods from a fixed view on sequence Gazebo(Summer). The
range of error is set to 0-5 cm as showing in the bottom colorbar.
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